IPD 1200

The following tables contain information on measured current consumption as well as calculated heat dissipation during what we see as the most extreme sustained normal operation (1/8 rated power).

IPD 1200										
Level	Load	Rated power		Mains voltage	Line current	Watt *1)			Thermal Dissipation	
				VAC	IAC *2)	In	Out	Dissipated	BTU/hr	kCal/hr
Standby w. remote Power Off.				230	0.07	6.50	0	7	22	6
				120	0.01	6.05	0	6	21	5
				100	0.1	6.05	0	6	21	5
Power on, Idling				230	0.21	25.80	0	26	88	22
				120	0.36	26.50	0	27	90	23
				100	0.39	24.90	0	25	85	21
Pink Pseudo Noise (1/8)	16 Ω / Ch.	150	x 2	230.0	0.5	68	38	30	103	26
				120.0	1.0	71	38	34	116	29
				100.0	1.1	71	38	34	116	29
	8 Ω / Ch.	300	× 2	230.0	0.9	119	75	44	152	38
				120.0	1.6	122	75	47	159	40
				100.0	1.8	122	75	47	159	40
	4 Ω / Ch.	600	× 2	230.0	1.8	226	150	76	260	65
				120.0	3.0	234	150	84	288	73
				100.0	3.4	229	150	79	269	68
	2 Ω / Ch.	500	x 2	230.0	1.7	217	125	92	313	79
				120.0	2.8	211	125	86	294	74
				100.0	3.4	222	125	97	331	83

*1) The amplifier's PSU operates as a non-resistive load, so the calculation "Volts x Amps = Watts" would not be correct. Instead, measured and specified here is what is known as the "Active Power" in the amplifier providing useful, real-world values of power consumption and heat dissipation.

*2) Current draw figures measured at 230 V. as well as 120 V. The efficiency is similar, but not identical for the two scenarios. The efficiency for 100 V mains is very similar to that of 120 V.

